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Flow laws for ice constrained by 70 years of 
laboratory experiments
 

Sheng Fan    1,2  , Ting Wang3, David J. Prior    1, Thomas Breithaupt2, 
Travis F. Hager4,5 & David Wallis    2

Flow laws for ice predict rates of deformation (strain) and are fundamental 
to modelling glacier and ice-sheet dynamics. Here we apply Bayesian 
inference to laboratory measurements accumulated over 70 years to 
constrain flow laws for ice-sheet modelling. At low strains, commonly used  
flow laws—derived from individual experimental datasets with narrow stress,  
temperature and grain-size ranges—fail to capture the full complexity of ice  
behaviour. We show that a multicomponent flow law that sums strain rates  
from different deformation mechanisms is needed to capture grain-size  
and temperature sensitivities observed in the full set of experiments.  
This multicomponent flow law is applicable to natural scenarios where the 
anisotropy of ice is weak or where the deformation kinematics differ from 
those that formed the crystallographic preferred orientation, making the ice 
more viscous. Low-strain flow laws, including this multicomponent flow law, 
have limited validity at high strain, where viscosity evolves and anisotropy 
develops, making ice less viscous. A one-component, grain-size insensitive 
flow law gives a reasonable fit to high-strain experimental data and is better 
suited to modelling the large-scale flow behaviour of ice sheets.

A key source of uncertainty in sea-level projections is understanding 
how rapidly ice sheets will respond to ongoing climate change. Two 
key factors determine the velocity of ice flowing from land into the 
ocean, specifically the internal deformation of the ice and the sliding 
of ice along the bedrock beneath it, known as basal sliding. Both fac-
tors are sensitive to changes in the driving forces that cause inland ice 
to flow seaward1. Floating ice shelves that extend from ice sheets can 
help to restrain inland ice. This supporting effect is called buttress-
ing. However, ongoing ocean warming is causing rapid thinning and 
calving at the edges of ice shelves, reducing buttressing forces and 
increasing stresses that drive inland ice movement, drastically accel-
erating ice-mass loss, and directly affecting sea levels2. To accurately 
assess how these changes will influence sea level, ice-sheet models 
must quantify robustly the contributions of both internal deformation 
and basal sliding to overall ice-flow velocity. In practice, such models 
represent internal deformation through flow laws that define relation-
ships between driving force (stress) and deformation rate (strain rate).  

Basal sliding laws are calibrated by comparing observed surface veloci-
ties with velocities calculated from the flow laws, with any excess attrib-
uted to sliding3,4. Thus, forecasts of the contribution of basal sliding to 
ice-mass loss fundamentally depend on flow laws for internal deforma-
tion. Both the form of the flow law and the values of its parameters have 
a substantial impact on model outcomes5. Therefore, robust flow laws 
are critically important for accurate forecasts of future ice-mass loss.

Flow laws for ice are derived from laboratory experiments6–8 (Fig. 1) 
and inversions of velocity data from remote sensing and the field9–14. 
Experiments offer the advantage of well-defined measurements of 
stress, strain rate, temperature and material characteristics, such as 
grain size and crystallographic preferred orientation (CPO). However, 
flow laws based on experiments must be extrapolated to the lower 
stresses (typically below 0.1 MPa) and strain rates (typically below 
10−8 s−1) relevant to ice sheets and glaciers. Robust extrapolation from 
experimental to natural conditions requires flow laws to have both the 
correct functional form and accurate values of parameters15.
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independent deformation mechanism39. We explore flow laws with 
different numbers of components ( ̇ε1, ̇ε2, … , ̇εm) summed as

̇εtotal = ̇ε1 + ̇ε2.… . + ̇εm, (1)

where m indicates the mth deformation mechanism. The Glen flow 
law is based on stress and strain-rate data obtained at strain-rate min-
ima (that is, secondary-creep data; Fig. 1a), and it has the form of a 
one-component, grain-size insensitive (GSI) constitutive equation7, 
specifically

̇ε = Aσn exp (− Q
RT

) , (2)

where ̇ε is strain rate, σ is stress, n is the stress exponent, Q is the 
activation energy, R is the universal gas constant, T is absolute tem-
perature and A is a scaling constant that encapsulates all unspecified 
factors (for example, CPO or impurity effects) influencing the defor-
mation.

To account for the relative weakness of ice deformed to high strain 
(Fig. 1a,b), Durham et al.20 derived a similar flow law, based on stresses 
and strain rates measured at high strain, after mechanical steady state 
was reached (flow stress; Fig. 1b). The Durham flow law shares the form 
of the Glen flow law (equation (2)) but with different parameter values 
(Table 1).

Goldsby and Kohlstedt8,27 observed that samples with smaller grain 
sizes exhibit faster strain rates when normalized to the same stress 
and temperature, indicating a grain-size sensitive (GSS) deformation 
mechanism. They proposed a composite flow law with two components 
that represent dislocation creep (as in equation (2)) and basal disloca-
tion glide limited by grain-boundary sliding (GBS; Table 1). The GBS 

Ice-sheet models routinely use the Glen flow law3,16, an empirical 
power-law relationship calibrated for ice that relates strain rate to stress 
and includes an Arrhenius temperature dependence (Supplementary 
Information Section 1). However, the Glen flow law does not fit labo-
ratory experiments well (see the next section) and needs substantial 
modification to match field observations9. A revaluation of the experi-
mental constraints on the flow laws for ice is overdue.

Here we reanalyse existing laboratory data obtained over a wide 
range of conditions using a Bayesian Markov chain Monte Carlo 
(MCMC) approach that enables us to test constitutive forms and deter-
mine flow-law parameters while also accounting for their interdepend-
encies and uncertainties (Methods). We compiled a comprehensive 
database (Supplementary Table 1) comprising 566 data points from 
published deformation experiments6,7,17–38 along with four additional 
experiments (Supplementary Information Section 2). Using 305 data 
points (Supplementary Table 2), we constrain flow laws for low strains 
(1–2%), relevant to peak stresses or secondary-creep strain rates. At 
these low strains, the microstructure remains largely unchanged 
from the isotropic (that is, lacking CPO) starting material. We also 
use 160 data points (Supplementary Table 3) to constrain a flow law 
for steady-state flow at higher strains (≳8%), corresponding to flow 
stresses or tertiary-creep strain rates, at which ice has weakened (Fig. 1) 
due to microstructural changes that include reduction in grain size and 
development of anisotropy (strong CPO). Importantly, we assess the 
resulting flow laws for consistency with the microphysical processes 
during the deformation of ice.

Mathematical forms of flow laws
We assume that, under applied stress, polycrystalline materials deform 
at a bulk strain rate, ̇εtotal, representing the sum of the strain rates from 
several components ( ̇ε1, ̇ε2, … , ̇εm ), each corresponding to an  
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Fig. 1 | Simplified schematic illustrations to show how flow-law parameters 
are derived from experimental measurements. a,b, Mechanical data acquired 
from individual constant load experiments (a) and constant displacement rate 
experiments (b). Each plot shows three experiments (black, yellow and red 
curves). c,d, A compilation of data from many experiments plotted as log strain 
rate versus log stress, focussing on the impact of varying grain size, d (c) and the 
effect of temperature, T (d). Each dot represents a pick of a strain rate-stress pair 

from an individual experiment as shown in a and b. c,e,f, Illustrations of how flow-
law parameters are calculated from mechanical data, showing the determination 
of stress exponent, n (c), grain-size exponent, p (e), and activation energy,  
Q and scaling constant, A (f). These schematics are simplified. Real data will be 
complicated by the operation of more than one mechanism giving different  
n, p and Q values in different regions of these graphs27. Any change in fit of n, p or 
Q requires a change in A.
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component includes the average grain diameter, d, and a grain-size 
exponent, p, and is expressed as

̇ε = Aσnd−p exp (− Q
RT

) . (3)

Both the Durham and Goldsby–Kohlstedt flow laws8,20 use axial 
stress and strain rate, where ‘axial’ refers to the stress and strain rate 
measured along the direction of loading in a uniaxial experimental 
setup. This convention aligns with laboratory conditions where stress 
and strain are typically applied and measured along a single princi-
pal axis. In contrast, glaciological studies commonly use octahedral 
shear stress, which is a scalar measure derived from the three principal 
stresses, and octahedral shear strain rate, a combined scalar measure of 
deformation rate based on the principal strain rates. These octahedral 
measures, derived from the full stress and strain-rate tensors, are more 
broadly applicable to diverse and complex loading conditions encoun-
tered in natural ice masses23,40. Published parameter values for the 
Glen flow law are usually based on octahedral values (Supplementary 
Information Section 1). The conversion from an octahedral to an axial 
flow law can be achieved via a multiplication of the scaling constant, 
A, by a value dependent on the stress exponent, n (Supplementary 
Information Section 1). Table 1 includes A values for flow laws in both 
axial (Aaxial) and octahedral (Aoct.) convention, for both easy comparison 
with experimental data and use in models.

Flow laws calibrated on low-temperature experiments (typically 
below −10 °C) tend to underestimate strain rates at higher tempera-
tures (typically above −10 °C), probably due to increased premelting 
at grain boundaries near the melting temperature41–43. Some flow laws 
have different Q values for different temperature regimes (for example, 
Table 1) separated by arbitrary thresholds between −18 °C and −10 °C 
(refs, 8,42,43), but this approach introduces discontinuities into predicted 
strain rates that are not present in experimental data (Supplementary 
Information Section 3).

To determine how many mathematical components are needed to 
represent low-strain experimental data, we derived flow laws with one 
to four components (Table 1). The one-component flow law is either 
GSI (p = 0; equation (2)) or GSS (equation (3)). In two-component and 
three-component flow laws, the first component is predefined as GSI, 
and the rest are GSS. Our two-component flow law mirrors the form 
of the Goldsby–Kohlstedt flow law. The three-component flow law 
includes two GSS components representing a single mechanism with 
temperature-dependent activation energy. In the four-component 
flow law, with two components defined as GSI and the remaining two 
components as GSS, one GSI component contributes negligibly (Sup-
plementary Information Section 4). Owing to the lack of grain-size 
data at high strains, we could only fit a one-component GSI flow law 
to these data.

Bayesian inference combines experimental measurements with 
prior knowledge to produce posterior distributions that reflect both 
data and initial assumptions of parameters (Methods). The MCMC 
method provides a practical tool to sample from complex posterior 

distributions. Using an iterative process, parameter values are repeat-
edly sampled from the posterior distribution until a stable set of sam-
ples is obtained, that is, the empirical distribution of the samples no 
longer changes substantially, a state known as convergence. Statistical 
diagnostics are used to confirm convergence, ensuring the final esti-
mates accurately reflect the most likely parameter values and their 
uncertainties. Posterior densities and summary statistics, such as the 
median and credible intervals, can then be obtained for the model 
parameters from these MCMC samples. We initiated Bayesian inference 
with prior distributions for n, Q, A and p for each flow-law component. 
Median prior values of n, Q and p are from ref. 42. Extended Data Table 1 
gives the prior and posterior statistics. Bayesian inference predicts that 
posteriors of n, Q, p and log A tend to follow normal distributions for 
one-component flow laws. For two-component and three-component 
flow laws, while most of the posterior distributions appear symmetric, 
they do not all follow normal distributions (Extended Data Fig. 1).

Our flow laws fit low-strain experimental data better than do the 
Glen and Goldsby–Kohlstedt flow laws (Fig. 2a and Extended Data 
Figs. 2 and 3). Only 4% of laboratory data exhibit stresses that differ 
by a factor greater than 1.5 (approximately half an order of magnitude 
in strain rate) from the predictions of the three-component flow law, 
and fewer than 1% differ by a factor greater than 2 (about one order of 
magnitude in strain rate; Methods). In contrast, 42% and 19% of labo-
ratory data differ by factors greater than 1.5 and 2, respectively, from 
the predictions of the Glen flow law, while 21% and 5% differ by these 
respective factors from the predictions of the Goldsby–Kohlstedt flow 
law. Discrepancies decrease as the number of components increases, 
as one-component flow laws cannot capture changes in the relative 
contributions of different deformation mechanisms with deformation 
conditions. One-component GSI flow laws, such as the Glen flow law, 
have discrepancies due to grain-size variation (Extended Data Fig. 4). 
Whilst the Goldsby–Kohlstedt flow law accounts for grain size, it gener-
ates discrepancies at higher temperatures because it applies different 
values of activation energy below and above an imposed temperature 
threshold (Extended Data Fig. 4). Our two- and three-component flow 
laws maintain low discrepancies across the full range of experimental 
variables, highlighting the importance of multicomponent flow laws 
with improved parameterizations that account for grain-size and tem-
perature effects.

Our high-strain flow law (one-component GSI) and the Durham 
flow law perform similarly and fit the high-strain data better than does 
the Glen flow law (Fig. 2b and Extended Data Figs. 5 and 6). Approxi-
mately 20% of laboratory data exhibit stresses that differ by a factor 
greater than 1.5, and around 1% differ by a factor greater than 2 from 
the predictions of our high-strain flow law. In comparison, the Glen flow 
law predicts deviations of approximately 90% and 79%, respectively.

Physical processes underpinning the deformation 
of ice
In the two-component and three-component flow laws, the best-fit 
activation energy, Q, for the GSI component is 60–70 kJ mol−1 (Table 1), 

Fig. 2 | Comparison of the fit of flow laws with experimental data and 
exploration of the flow laws to natural conditions. a,b, Distribution of the 
discrepancy, ΔP−M, plotted on a base 10 logarithmic scale, between the flow-
law predictions and experimental measurements (Methods) at low strain 
(1–2%; a) and high strain (≳8%; b). The use of the Glen flow law16 with calibrated 
parameters42 is shortened as Glen‒Kuiper. The use of the Goldsby-Kohlstedt 
flow law8 with calibrated parameters42 is shortened as GK‒Kuiper. The use of the 
Durham flow law with corresponding parameters20 is shortened as Durham.  
Each histogram in a represents data from 305 experiments, while each histogram 
in b represents data from 160 experiments. Values of log ΔP−M greater than 0 
and less than 0 suggest that the flow law predicts strain rates that are faster or 
slower than those measured, respectively. The black vertical bar represents the 
interquartile range of log ΔP−M. The white circle represents the median value 

of log ΔP−M. More complete discrepancy graphs are presented in Extended 
Data Figs. 2 and 3. c–e, Predictions of strain rate as a function of stress (c), 
temperature (d) and grain size (e) using the one-, two- and three-component 
flow laws constrained by low-strain experimental data. The red circle represents 
conditions that are commonly used in laboratory experiments. The figure 
highlights how predictions of flow laws using different numbers of components 
diverge as conditions deviate from those of the experiments. f,g, Strain-rate 
predictions, contrasting the three-component flow law constrained by low-strain 
experimental data with the published Glen flow law (f) and Goldsby–Kohlstedt 
(G–K) flow law (g). h, Comparison of strain-rate predictions, contrasting the 
one-component, GSI law constrained by high-strain experimental data with the 
Glen flow law.
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consistent with experimental estimates44 and theoretical values based 
on the volume self-diffusion of oxygen in ice45. Dislocation creep in 
ice involves the movement of oxygen atoms within the crystal lattice, 
a process governed by self-diffusion. Therefore, the matching activa-
tion energies support the widely accepted notion that dislocation 
creep, a GSI mechanism, is a key deformation mechanism in ice39.  

Our analysis demonstrates that an additional GSS component with 
nonlinear stress dependence is necessary to fit experimental data. 
Goldsby and Kohlstedt8,27 inferred that the GSS mechanism in their 
composite flow law involves GBS, which accompanies any deformation 
where the grain aggregate does not deform homogeneously46, such 
as in diffusion creep and dislocation-accommodated GBS (disGBS)47. 
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The GSS components in our two- and three-component flow laws have 
best-fit stress exponents n ≈ 2 and grain-size exponents, p ≈ 1–2 (Table 1), 
consistent with values from disGBS-dominated creep experiments 
conducted under more limited ranges of conditions27. Therefore, 
we propose that in our two- and three-component flow laws, the GSI 
component represents dislocation creep, while the GSS components 
represent disGBS.

Our three-component flow law includes two GSS components, 
raising the question of whether two distinct disGBS components are 
physically justifiable. The n and p values for these GSS components are 
similar and align with theoretical predictions for materials deform-
ing by disGBS48. When we constrain the n and p values of the two GSS 
components to be identical, the fit remains nearly as good (Supplemen-
tary Information Section 5). However, the best-fit Q values of the two 
GSS components are different (Table 1), suggesting that the relative 
strain-rate contribution from different GSS components depends 
only on temperature. Thus, the two GSS components may represent a 
single mechanism with a temperature-dependent activation energy. 
To test this inference further, we compare these flow laws with data 
from experiments49 that show gradual changes in apparent Q near the 
melting temperature (Extended Data Fig. 7). Our three-component 
flow law fits the experimental measurements better, predicting an 
increase in apparent Q from ~50 kJ mol−1 at −30 °C to 110 kJ mol−1 at 
−3 °C. This observation suggests that the GSS component(s) requires 
a temperature-dependent Q. However, the precise functional form of 
this temperature dependence remains unknown, and thus we highlight 

the importance of gaining a better understanding of the physics of 
premelting than is currently available.

While deformation mechanisms in ice at high strain are probably 
similar to those at low strain, interactions among the mechanisms 
become complex due to the development of CPO and changes in grain 
size with strain34. At high strain, a one-component GSI flow law fits the 
data reasonably well, suggesting that it may be a suitable first approxi-
mation. In many materials, the size of recrystallized grains decreases 
with increasing stress, termed a piezometric relationship50, and there 
is experimental evidence for a piezometric relationship in ice22. If grain 
size is stress-controlled, it may not need to be explicitly included in the 
flow law, even if GSS mechanisms are active51. CPO strength also varies 
with stress32,34,36, possibly eliminating the need to explicitly account for 
CPO strength in flow laws. Our best-fit flow law has an n value of 3.5. If 
we exclude the highest temperature data (between −2 °C and −5 °C), 
then the best-fit value of n becomes closer to 4 (Extended Data Fig. 8). 
We speculate that the data collected at higher temperatures could be 
influenced by mechanisms with Newtonian rheological behaviour at 
the pressure melting temperature52,53.

Extrapolating flow laws to natural scenarios
At low strain, one- and multicomponent flow laws yield similar strain 
rates within the narrow ranges of experimental stresses, temperatures 
and grain sizes. However, when extrapolated to ice-sheet conditions, 
which involve lower stresses and larger grain sizes, the predictions 
diverge substantially. At typical glaciological stresses (≤0.1 MPa), 
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multicomponent flow laws predict strain rates an order of magnitude 
faster than those predicted by one-component flow laws (Fig. 2c, orange 
box). This divergence increases as temperature (Fig. 2d) and grain size 
(Fig. 2e) deviate from experimental ranges. Our three-component 
flow law has the strongest physical basis, encapsulating the observed 
grain-size and temperature dependencies of ice viscosity with parame-
ter exponents consistent with those predicted by microphysical models 
of dislocation creep and disGBS (previous section). Therefore, we sug-
gest that the three-component flow law best represents the deforma-
tion mechanisms that are active in experiments and ice sheets, and we 
speculate that it should provide more robust predictions when extrapo-
lated to natural conditions than flow laws with fewer components.

To highlight the importance of well-calibrated flow laws, we com-
pare our flow laws with two previous flow laws that are commonly used 
in ice-sheet modelling (Fig. 2f‒h). The Glen flow law predicts similar 
strain rates to those predicted by our low-strain three-component 
flow law under stress conditions close to experimental settings (for 
example, dashed lines, Fig. 2f). However, under stress conditions more 
typical of natural environments (for example, solid lines, Fig. 2f), the 
Glen flow law predicts strain rates over an order of magnitude slower 
at a grain size of 1 mm, with this difference decreasing at larger grain 
size. The Goldsby–Kohlstedt flow law matches our three-component 
flow law at temperatures below 262 K but predicts strain rates up to an 
order of magnitude faster above this temperature. The discrepancy 
between the predictions of our high-strain one-component flow law 
and those of the Glen flow law is stress dependent, reflecting the differ-
ent n values. The Glen flow law predicts strain rates up to half an order 
of magnitude faster at stresses below 0.05 MPa, but up to an order of 
magnitude slower at stresses above 0.05 MPa.

To demonstrate differences in the predictions of different flow 
laws in a natural context, we apply our flow laws to data from the 
North Greenland Eemian Ice Drilling (NEEM) project. Although the 
grain sizes are specific to the NEEM ice core, the trend of grain size 
with depth in the NEEM ice core is similar to that observed in other ice 
cores, such as those from the Greenland Ice Core Project54 and Jarvis 
Glacier, Alaska55. Therefore, using NEEM ice-core measurements as 
inputs for flow-law predictions provides a general framework for 
understanding the relationships between grain size, depth and inter-
nal deformation in natural glacier ice. We use stress estimates, meas-
ured temperatures and grain sizes from ref. 56 as shown in Fig. 3a,b  
(refs. 57,58). The Glen flow law predicts strain rates that differ by 
factors of 0.1‒1,000 compared with our three-component flow law 
(Fig. 3c,d). In the uppermost 2,300 m, the Glen flow law predicts slower 
strain rates (Fig. 3c,d), indicating less internal deformation compared 
with predictions from our three-component flow law. Additionally, 
our three-component flow law predicts that the contribution of GSI 
creep to the total strain rate increases with depth, primarily due to 
increasing differential stress (Fig. 3e).

Application to ice-sheet modelling
Robust ice-sheet modelling depends on suitable flow laws. Multicompo-
nent flow laws including GSS components give the best fit to low-strain 
experimental data; the three-component flow law provides the opti-
mal fit. The low-strain flow laws represent the behaviour of isotropic 
ice that retains its original grain size. Although this situation is rare 
in nature, low-strain flow laws may be applicable to anisotropic ice 
when deformation kinematics differ from those that formed the CPO. 
Examples include glacier borehole closure, where Glen7 found that data 
from borehole closure40 match well with predictions based on their 
low-strain experimental results, as well as flexural deformation near 
grounding lines59, ice transitioning onto an ice shelf14 and any scenario 
with sudden changes in kinematics.

The most appropriate flow law for most ice-sheet models should 
ideally be derived from high-strain data, which reflect the micro-
structure (grain size and CPO) established by ongoing deformation 

kinematics. Unfortunately, the experimental basis for high-strain 
flow laws remains far more limited than for low-strain regimes. Exist-
ing high-strain datasets are sparse and typically lack detailed micro-
structural characterization, such as measurements of grain size and 
CPO. Moreover, the narrow ranges of stress and strain rate in current 
high-strain experiments—often several orders of magnitude faster 
than those in nature—complicates extrapolation to field conditions. 
A promising way to resolve this disparity is by obtaining and testing 
naturally deformed ice that has reached near-steady-state conditions, 
allowing investigation of relationships between microstructure and 
mechanical response at more realistic stress and strain rates60. Further 
high-strain experiments, encompassing a broader range of stresses, 
strain rates and temperatures, are necessary to test and refine the 
one-component flow law.

Despite these experimental challenges, large-scale ice-sheet mod-
els demand practical solutions. Incorporating a multicomponent flow 
law into continental-scale simulations is hampered by the scarcity 
of grain-size data across vast ice-sheet regions. Grain size can vary 
markedly with depth, temperature, impurity content and deformation 
history61,62. Obtaining such data at the spatial resolution needed for 
continental-scale modelling would require extensive field investiga-
tions, ice-core analyses and/or remote-sensing techniques, many of 
which are resource-intensive and constrained by practical limitations. 
Encouragingly, our study shows that a one-component, grain-size 
insensitive flow law provides a reasonable fit to the high-strain experi-
mental data available. This finding points to the possibility of a uni-
fied flow law that obviates the need for specifying grain size or CPO, 
broadening its applicability. Consequently, for models where ice pre-
dominantly experiences high strain, the stress exponent, n, should be 
4 if very high-temperature conditions (T > −5 °C) are not considered. 
However, if the modelling temperature includes T > −5 °C, the value 
of n should be 3.5.
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Methods
Bayesian inference
To determine the best-fit parameters for flow laws, we apply the Bayes-
ian inference, which provides a rigorous framework to estimate the 
parameters from experimental data, combined with our prior under-
standing63. While the Bayesian framework provides a sound theo-
retical foundation, in practice, deriving the posterior distributions of 
parameters analytically can be mathematically challenging, especially 
for complex models, as is the case in this study, which has up to nine 
unknown parameters. The MCMC method provides a practical tool 
to efficiently sample from complex posterior distributions, enabling 
robust Bayesian inference for intricate models and large datasets64,65.

Here we use the MCMC method to generate samples from the 
posterior distribution of model parameters, implemented in the JAGS 
software (https://mcmc-jags.sourceforge.io/) and the R2jags package 
(http://cran.at.r-project.org/web/packages/R2jags) in R. The samplers 
used in JAGS, which runs via the R2jags package in R, are automatically 
selected, starting with sampling methods that are efficient (for exam-
ple, the Gibbs sampler) and ending with the most generic methods (for 
example, the Metropolis–Hastings algorithm) when needed66. After 
sufficient iterations (~106 in this study), the samples stabilize and con-
verge, yielding a representative posterior distribution of the target 
parameters (Supplementary Information Section 6). We use three 
chains, a burn-in of 104 samples and thinning by every 20 samples. 
Convergence is determined using the potential scale reduction factor 
̂R, which estimates how closely the simulations align with the  

desired target distribution67,68. While ̂R > 1.2  typically signals non- 
convergence, we adopt a more stringent rule of ̂R < 1.1 to ensure robust 
convergence.

Prior distributions of flow-law parameters
Extended Data Table 1 presents the constraints on prior distributions of 
flow-law parameters. For parameters of stress exponent, n, grain-size 
exponent, p, and activation energy, Q, we use normal distributions 
centred at mean values, μ, adopted from ref. 42 and truncate between 
a minimum and a maximum value as the prior distribution. We choose 
a modest variance, σ2, of 0.1 for nGSI as n = 4 has been relatively well 
constrained for dislocation creep in ice from previous studies20,69. We 
choose a large variance, σ2, of 100 for n (excluding nGSI), p and Q, as they 
are less constrained by previous experiments, and our confidence in 
their reported values is accordingly less. We impose a uniform distribu-
tion for the material-dependent parameter, A, as it is poorly constrained 
by previous studies.

Input data
Our database summarizes technical details, such as temperature, 
experiment type and sample geometry, as well as mechanical data and 
microstructural statistics, including strain rate, stress, strain and grain 
size, for 570 experiments (Supplementary Table 1). Where mechanical 
data are not presented in tabulated form6,23,24,27,29,30, we digitized the 
relevant stresses and strain rates from the figures.

Experiments summarized within the database exhibit variability 
in their calculation methods for strain rate, strain, stress and grain size. 
We have addressed these discrepancies by converting and standard-
izing variables calculated through different methods. For uniaxial 
compression experiments, we converted the reported engineering 
strain/strain rate or octahedral shear strain/strain rate to the true axial 
strain/strain rate following ref. 34. Similarly, we converted the reported 
octahedral shear stress to axial stress following ref. 36. For direct-shear 
experiments, we converted the reported shear strain/strain rate and 
shear stress to the von Mises strain/strain rate and von Mises stress, 
respectively, following ref. 33. When experiments provide grain-area 
data, we convert them to area-equivalent diameter36.

We have chosen experiments performed at temperatures  
below −2 °C, given the difficulties in maintaining temperature control 

near 0 °C. Moreover, we have excluded experiments by ref. 20 con-
ducted at temperatures below −40 °C and under exceptionally high 
stresses (>>10 MPa). These conditions result in a complex mechanical 
behaviour of ice that is not typically observed in terrestrial ice flow 
and is associated with a different stress exponent70. We also excluded 
experiments conducted without confining pressure at axial stresses 
greater than 1.5 MPa due to the potential for sample cracking18,19; how-
ever, including these data would not substantially change the fitting 
results (Supplementary Information Section 7). From the remaining 
experiments, we use the converted strain rate, stress and grain size as 
inputs for our flow laws.

Likelihood of experimental measurements
We assume that the strain rate measured from the ith experiment, ̇εimeas., 
follows a logarithmic normal distribution centred around the expected 
strain rate, ̇εiexp ., with a variance of 0.1 (equation (4)). This variance 
corresponds to an experimental error factor of approximately 2 as 
reported in previous studies23,30,36:

log ̇εimeas.≈𝒩𝒩 (log ̇εiexp .,0.1) . (4)

The ̇εiexp . is the sum of strain rates from different deformation 
mechanisms,

̇εiexp . = ∑
j

̇εj (σi,Ti,di) , (5)

where the subscript j denotes deformation mechanism. For a 
one-component flow law, j = 1 and it refers to either GSI or GSS creep. 
For a two-component flow law, j = 1 refers to GSI creep, and j = 2 refers 
to GSS creep. For a three-component flow law, j = 1 corresponds to GSI 
creep, while j = 2,3 corresponds to GSS creep. For a four-component 
flow law, j = 1,2 corresponds to GSI creep, while j = 3,4 corresponds to 
GSS creep.

We assume that the average grain size, di, follows a normal distri-
bution centred at the measured average grain size, di

meas., with a specific 
variance, si

d

2
 (equation (6)). For works that do not provide the 

grain-size distribution, we propose that errors in grain size are pro-
portional to di

meas., and previous works have assumed si
d
≈ 0.3di

meas.   
(refs. 34,71). For works that provide the grain-size metrics of the upper 
quartile, di

UQ, and lower quartile, di
LQ, we impose si

d
= (di

UQ − di
LQ)/1.3, 

where 1.3 is the scaling factor between standard deviation and inter-
quartile range:

di≈𝒩𝒩 (di
meas., sid

2
) . (6)

We assume that the average temperature, Ti, follows a normal 
distribution centred at the measured average temperature, Ti

meas., with 
a specific variance, si

T

2
,

Ti≈𝒩𝒩 (Ti
meas., s iT

2
) . (7)

For works that did not provide uncertainties on temperatures, we 
impose si

T
= 0.5K , similar to previous studies32,34,35. For works that 

provide the temperature metrics of upper quartile, Ti
UQ, and lower 

quartile, Ti
LQ, we impose si

T
= (Ti

UQ − Ti
LQ)/1.3.

Discrepancy between flow-law predictions and experimental 
measurements
The R2jags package provides a deviance information criterion72 as a 
measure for comparing the performance of different flow laws. The 
deviance information criterion not only evaluates the goodness of fit 
but also considers flow-law complexity. A lower deviance information 
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https://mcmc-jags.sourceforge.io/
http://cran.at.r-project.org/web/packages/R2jags


Nature Geoscience

Article https://doi.org/10.1038/s41561-025-01661-z

criterion value suggests a better balance between a good fit to the data 
and flow-law simplicity.

To assess the goodness of fit for each experiment, we determine 
the discrepancy between flow-law predictions and experimental meas-
urements, ΔP−M. For experiments at constant strain rate, we estimate 
the stress, σpredict, using measured average strain rate, temperature 
and/or grain size coupled with the median values from the posterior 
distributions of the flow-law parameters (Table 1). The values of ΔP−M for 
these experiments are derived by comparing σpredict with the measured 
average stress, σmeasure, given by

ΔP−M = σmeasure
σpredict

. (8)

For constant load/stress experiments, we estimate the strain rate, 
̇εpredict, using measured average stress, temperature and/or grain size 

coupled with the median values from the posterior distributions of the 
flow-law parameters (Table 1). The values of ΔP−M for these experiments 
are derived by comparing ̇εpredict with the measured average strain rate, 
̇εmeasure, given by

ΔP−M = (
̇εpredict
̇εmeasure

)
1

log ′ ̇εpredict
, (9)

where log′ ̇εpredict denotes the slope of the tangent line to the curve of 
the flow-law prediction at log ̇εpredict, corresponding to log σmeasure. The 
logarithms are calculated to base 10.

If flow-law predictions are close to experimental measurements, 
then log ΔP−M ≈ 0. A non-zero log ΔP−M indicates a divergence between 
flow-law predictions and experimental measurements. Specifically, 
log ΔP−M is positive when the flow law predicts a weaker mechani-
cal behaviour and negative when it predicts a stronger mechanical 
behaviour compared with measurements. We need this approach to 
compare constant load and constant displacement rate experiments, 
because strain rate is related to stress through the stress exponent, 
n. For example, the ratio of measured and predicted stress of 2 is 
equivalent to a ratio of 8 (for n = 3) or 16 (for n = 4) of measured and 
predicted strain rate.

Data availability
Grain-size measurements for the NEEM ice core are available via 
PANGAEA at https://doi.org/10.1594/PANGAEA.83805 (ref. 57). Input 
data used for the Bayesian modelling are available in Supplementary 
Tables 1–5. Raw outputs from the Bayesian modelling are provided in 
Supplementary Data 1. We digitized stress and strain rate data from refs. 
6,23,24,27,29,30 from figures for experiments where mechanical data 
were not presented in tabulated form. Temperature measurements as 
a function of depth for the NEEM ice core were digitized from ref. 58. 
The digitized files are provided in Supplementary Data 2. All the Sup-
plementary Data and source files for Figs. 2 and 3 and Extended Data 
Figs. 1–8 are publicly available via figshare at https://doi.org/10.6084/
m9.figshare.26381212 (ref. 73). Source data are provided with this 
paper.

Code availability
The R code, which includes comprehensive markdown notes detail-
ing the modelling process, is available in Supplementary Code 
1, and is publicly available via figshare at https://doi.org/10.6084/
m9.figshare.26381212 (ref. 73), via GitHub at https://github.com/
ShengFanGeology/BayesianIceFlow and via Code Ocean at https://
doi.org/10.24433/CO.6852095.v1 (ref. 74).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Posterior distributions of parameters for flow laws with 
axial stress/strain rate convention. a, b, c, and d, Flow-law parameters at low 
strain, corresponding to the secondary minimum strain rate (for constant load 
experiments) or peak stress (for constant displacement rate experiments).  
e, Flow-law parameters at high strain, corresponding to the tertiary-creep strain 
rate (for constant load experiments) or flow stress (for constant displacement 
rate experiments). The posterior distribution is depicted as a histogram for 

each parameter, superimposed with a fitting normal distribution (blue solid 
curve). The distribution of each parameter in a, b, c, d, and e is derived from a 
dataset comprising 598500 samples generated from Bayesian modelling. The 
interquartile range is emphasised with a light-red shaded area on the histogram 
and corresponds to the horizontal error bar above. The median is denoted by 
a pronounced vertical line on the histogram and a red square on the error bar. 
Quartile values are indicated in grey, with the median highlighted in red.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Comparison of flow-law predictions and experimental 
measurements at low strain. Measured stresses are plotted against measured 
strain rates with symbols coloured by discrepancy, log(ΔP−M), between flow law 
and measurement (Methods), respectively, at low strain (1–2%). a, b, and c, 
Comparisons with one-component flow laws: Glen flow law (a), GSI flow law (b), 
and GSS flow law (c). d and e, Comparisons with two-component flow laws: 
Goldsby–Kohlstedt flow law (d) and a two-component flow law with parameters 
evaluated in this study (e). f, Comparisons with the three-component flow law. 
Pale shades signify a close agreement between flow-law predictions and 
measurements, whereas darker shades highlight deviations between the two. 

Shapes differentiate experiments conducted by various research groups using 
similar experimental approaches. The five-point star represents Glen’s group6,7. 
The square represents Duval’s group17. The circle represents Jacka’s group21–25,28. 
The six-point star represents Goldsby–Kohlstedt’s group27. The left-point triangle 
represents Piazolo’s group29. The up-point triangle represents Montagnat’s 
group30. The down-point triangle represents Mellor’s group18,19. The right-point 
triangle represents Vaughan’s group31. The diamond represents Goldsby–Prior–
Durham’s group20,32–38. The use of the Glen flow law16 with calibrated parameters42 
is shortened as Glen‒Kuiper. The use of the Goldsby-Kohlstedt flow law8 with 
calibrated parameters42 is shortened as GK‒Kuiper.
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Extended Data Fig. 3 | Comparison of normalised measurements (blue 
circles) with flow-law predictions at low strain. For the Glen flow law and 
Goldsby-Kohlstedt (shortened as G-K) flow law, the red line represents the 
prediction using published parameters42. In a–c, measurements are normalised 
to temperature of 268 K and grain size of 1 mm (where applicable). In d–f, 

measurements are normalised to stress of 0.5 MPa and grain size of 1 mm (where 
applicable). In c and f, the red line represents the prediction based on the median 
values of the parameters, while the dashed green lines denote the interquartile 
range of the prediction, constructed using the lower and upper quartiles of the 
parameter distributions (Table 1), forming an envelope.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Scattered plots showing the relationship between the 
discrepancy of the flow-law prediction and the measurements, as functions 
of temperature, stress, and grain size. a, b, and c, Comparisons with one-
component flow laws: Glen flow law (a), GSI flow law (b), and GSS flow law (c).  
d and e, Comparisons with two-component flow laws: Goldsby–Kohlstedt flow 

law (d) and a two-component flow law with parameters evaluated in this study 
(e). f, Comparisons with the three-component flow law. The red dotted line 
represents a discrepancy of 1, suggesting that experimental measurement equals 
to the flow-law prediction.
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Extended Data Fig. 5 | Comparing flow-law predictions with experimental 
measurements at high strain. Measured stresses are plotted against measured 
strain rate with symbols coloured by discrepancy, log(ΔP−M), between flow law 
and measurement (Methods), respectively, at high strain (≳8%). a, b, and c, 

Comparisons with one-component flow laws: Glen flow law (a), Durham  
flow law (b) and GSI flow law (c). The descriptions correspond directly to 
Extended Data Fig. 2.
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Extended Data Fig. 6 | Comparison of normalised measurements (blue 
circles) with flow-law predictions at high strain. For the Glen flow law, the 
red line represents the prediction using published parameters42. In a and b, 
measurements are normalised to temperature of 268 K. In c and d, measurements 
are normalised to stress of 0.5 MPa. In b and d, the red line represents the 

prediction based on the median values of the parameters, while the dashed green 
lines denote the interquartile range of the prediction, constructed using the 
lower and upper quartiles of the parameter distributions (Table 1), forming  
an envelope.
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Extended Data Fig. 7 | Comparison of two- and three-component flow law predictions with experimental measurements. a, Predicted and measured strain rates as 
a function of temperature, with measured strain rates from Morgan49. b, Predicted and measured apparent activation energy as a function of temperature, calculated 
from the measured strain rate-temperature relation.
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Extended Data Fig. 8 | Illustrating the best-fit n values for one-component flow law with different temperature thresholds at high strain. Red dots represent the 
median value, blue whiskers represent the interquartile range. Each interquartile range is based on a dataset comprising 598500 samples generated from Bayesian 
modelling.
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Extended Data Table 1 | Prior and posterior statistics for parameters of the flow laws

# The scaling constant, A, has units of MPa−nmps−1; the activation energy, Q, has units of kJmol−1. The logarithms are calculated to base 10. The flow law parameters are used for predicting 
axial strain rate with an input of axial stress, temperature, and grain size. * TN(μ, s2,min,max) represents a normal distribution truncated between specified minimum and maximum bounds, 
with mean, μ, and variance, s2. U(min,max) represents a uniform distribution where all values between the specified minimum and maximum bounds are equally likely. † The median, lower 
quartile, and upper quartile values of each parameter are derived from the posterior distributions obtained through Bayesian statistical modelling.
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